Abstract

In this work, the formation of various polystyrene (PS) colloidal structures on striped PS patterns is demonstrated based on a simple and novel convective assembly method that controls the electrostatic interactions between the PS colloidal particles and sodium dodecyl sulfate (SDS). Under the optimal conditions (different withdrawal speeds, channel dimensions, suspension concentrations, etc.), highly ordered structures such as highly close-packed, zigzag, and linear colloidal aggregates are observed. In addition, these colloidal arrangements are used for development of molecularly imprinted polymer (MIP) sensors with highly improved sensing properties. Using PDMS replicas, three hemispherical poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) MIP films, including planar MIP and non-imprinted polymer (NIP) films, are photopolymerized for detection of trace atrazine in an aqueous solution. From gravimetric quartz crystal microbalance (QCM) measurements, a non-close-packed MIP film exhibits highest sensing response (Δf = 932 Hz) to atrazine detection among hemispherical MIP films and shows 6.5-fold higher sensing response than the planar MIP film. In addition, the sensitivity of the MIP sensor is equivalent to -119 Hz/(mol L(-1)). From the ratio of slopes of the calibration curves for the hemispherical MIP and NIP films, the imprinting factor (If) is as high as 11.0. The hemispherical MIP film also shows excellent selectivity in comparison with the sensing responses of other analogous herbicides. As a result, this molecular surface imprinting using PS colloidal arrays is highly efficient for herbicide detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.