Abstract

Diclofenac sodium salt (DFC) is one of the new and emerging pollutants emanating from pharmaceuticals which are essential for animals and humans detected in drinking water effluents. DFC removal is a concern as it has been implicated in adverse health effects to humans and the ecosystem. In this study, different nanocomposites of cobalt (II, III) oxide and tungsten (VI) oxide were evaluated for the degradation of diclofenac sodium salt (DFC) under visible light irradiation. The synthesized composites were characterized by different techniques such as SEM, XRD, UV–vis, BET, TEM, and PL and the degradation results were obtained as a function of pH. The synthesized nanocomposites had oxygen vacancies and absorbed visible light with a low bandgap of 2.61 eV. The decrease of the microstrain values of the composites demonstrated improved crystallinity which improved the lattice structural defects of the photocatalyst with 1.6 × 10 −3 dislocations/nm2 compared to pristine WO3 resulting in high catalytic efficiencies. The mineralization of DFC involved the highly oxidizing hydroxyl radicals with an efficiency of 98.7 % at pH 10.7. The enhanced performance of the catalyst was due to p-n heterojunction formation that reduced electrons and holes recombination and improved interaction between the metal oxide semiconductors. The nanocomposite is suitable for applications in mineralization of organic pollutants in water under visible light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.