Abstract

CeO2 nanoparticles (NPs) were synthesized by coprecipitation using cerium(III) nitrate hexahydrate as the precursor and ethanol as the solvent. Different concentration of cobalt-doped cerium oxide NPs (3mol % and 6mol %) were prepared by adding various concentrations of cobalt chloride to cerium nitrate. The as-synthesized NPs were characterized through X-ray diffraction (XRD) measurements, ultraviolet (UV)–visible spectroscopy, Photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). XRD results reveal that the as-prepared CeO2 NPs had a face-centered cubic structure with crystallite size in the range of 5–8nm. TEM analyses showed that the CeO2 NPs and Co-doped CeO2 NPs had a homogenous size distribution (sizes were within 5–12nm). Band-edge absorption of CeO2 NPs redshifted upon increasing the Co concentration as compared to undoped CeO2 NPs. PL spectra reveal a peak shift of CeO2 emission upon cobalt doping, which were due to an increase in oxygen defects localized between the Ce4f and O2p energy levels (i.e., via formation of Ce3+ states). Photocatalytic degradation of methylene blue in aqueous solution under UV and visible (sunlight) irradiation in the presence of pure CeO2 NPs and of Co-doped CeO2 NPs was investigated. The efficiency of photocatalytic degradation of CeO2 NPs increased with the Co concentration both under UV irradiation and under visible light. Co-doped CeO2 NPs (6mol%) showed degradation efficiencies of 98% and 89% at 420min of exposure to UV irradiation and to visible light, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.