Abstract

AbstractHerein, it is demonstrated that a chemical waste from the silicon industry, namely polymethylhydrosiloxane (PMHS), is a suitable hydrosilane source for the challenging, selective aerobic oxidation of olefins into methyl ketones under cobalt catalysis: a first row, abundant in the Earth's crust and cheap metal with low toxicity. The catalytic system operates under unprecedented, stoichiometric amounts of hydrosilane while the cobalt catalyst loading is kept at a very low 1 mol% with the reactions being finished in less than 1 hour with very high turnover numbers (1,340) and record‐breaking turnover frequency values up to 530 h−1. Mechanistic studies highlight the key role of the porphyrin ligand for stabilizing the active cobalt species that does follow a radical‐based reaction pathway under these particular conditions. These results are relevant for replacing the expensive and scarce palladium catalyst, traditionally used for Wacker‐type oxidations, by first‐row, Earth‐abundant transition metals under green conditions including the efficient valorization of a chemical waste such as PMHS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.