Abstract

Inexpensive cobalt catalysts derived from N-heterocylic carbenes (NHC) allowed efficient catalytic C-H bond arylations on heteroaryl-substituted arenes with widely available aryl chlorides, which set the stage for the preparation of sterically hindered tri-ortho-substituted biaryls. Likewise, challenging direct alkylations with β-hydrogen-containing primary and even secondary alkyl chlorides proceeded on pyridyl- and pyrimidyl-substituted arenes and heteroarenes. The cobalt-catalyzed C-H bond functionalizations occurred efficiently at ambient reaction temperature with excellent levels of site-selectivities and ample scope. Mechanistic studies highlighted that electron-deficient aryl chlorides reacted preferentially, while the arenes kinetic C-H bond acidity was found to largely govern their reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.