Abstract

Developing suitable materials that can differentiate between chemically similar substances such as aliphatic and aromatic amines is challenging. Aliphatic and aromatic amines vary considerably in size and electronic properties despite possessing the same functional group. This makes the entire separation process more tedious. Metal–organic frameworks known for their inherent permanent porosity can be designed using appropriate building blocks that can lead to multifunctional materials. Here we utilize two Co-based multifunctional MOFs for discriminative sensing of amines and on-site detection of ammonia. Both the MOF materials display unique fluorescence behavior where aliphatic amines lead to “turn-off”, and aromatic amines show “turn-on” fluorescence intensities of the two MOFs. Real-time sensing experiments with MOF-based mixed matrix membranes show an instant color change when ammonia is liberated from a chemical reaction. Density functional theory calculations unravel that the aliphatic and aromatic amines interact with the MOF structures in different ways that lead to “turn-off” and “turn-on” fluorescence behavior, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.