Abstract

Cobaloximes are effective electrocatalysts for hydrogen evolution and thus functional models for hydrogenases. Among them, difluoroboryl-bridged complexes appear both to mediate proton electroreduction with low overpotentials and to be quite stable in acidic conditions. We report here a mechanistic study of [Co(dmgBF2)2L] (dmg2- = dimethylglyoximato dianion; L = CH3CN or N,N-dimethylformamide) catalyzed proton electroreduction in organic solvents. Depending on the applied potential and the strength of the acid used, three different pathways for hydrogen production were identified and a unified mechanistic scheme involving cobalt(II) or cobalt(III) hydride species is proposed. As far as working potential and turnover frequency are concerned, [Co(dmgBF2)2(CH3CN)2], in the presence of p-cyanoanilinium cation in acetonitrile, is one of the best synthetic catalysts of the first-row transition-metal series for hydrogen evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call