Abstract

Hydrogen (H2) is considered one of the main pillars for transforming the conventional “dark” energy system to a net-zero carbon or “green” energy system. This work reviewed the potential resources for producing low-carbon hydrogen in China, as well as the possible hydrogen production methods based on the available resources. The analysis and comparison of the levelized cost of hydrogen (LCOH) for different hydrogen production pathways, and the optimal technology mixes to produce H2 in China from 2020 to 2050 were obtained using the mixed-integer linear programming (MILP) optimization model. The results were concluded as three major ones: (a) By 2050, the LCOH of solar- and onshore-wind-powered hydrogen will reach around 70–80 $/MWh, which is lower than the current H2 price and the future low-carbon H2 price. (b) Fuel costs (>40%) and capital investments (~20%) of different hydrogen technologies are the major cost components, and also are the major direction to further reduce the hydrogen price. (c) For the optimal hydrogen technology mix under the higher renewable ratio (70%) in 2050, the installed capacities of the renewable-powered electrolysers are all more than 200 GW, and the overall LCOH is 68.46 $/MWh. This value is higher than the LCOH (62.95 $/MWh) of the scenario with higher coal gasification with carbon capture and the storage (CG-CCS) ratio (>50%). Overall, this work is the first time that hydrogen production methods in China has been discussed comprehensively, as well as the acquisition of the optimal H2 production technology mix by the MILP optimization model, which can provide guidance on future hydrogen development pathways and technology development potential in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call