Abstract

A high performance optical phased array (OPA) combined with frequency-modulated continuous-wave (FMCW) technology is essential for coherent all-solid-state light detection and ranging (LiDAR). In this work, we propose and experimentally demonstrate a coaxial transceiver based on a single OPA for a LiDAR system, which releases the off-chip circulator and collimator. The proposed scheme is demonstrated on the commonly used silicon-on-insulator (SOI) platform. For realizing the long optical grating antenna with only one-step etching, the bound state in the continuum is harnessed to simplify the fabrication process and ease the fabrication precision. Experimental results indicate that the OPA is with 0.076° vertical beam divergence under a 1.5 mm-long grating antenna. The measured field of view (FOV) is 40° × 8° without grating lobes under a wavelength band of 60 nm. The coaxial transceiver of the single OPA is also demonstrated with the FMCW method for ranging measurement at different angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.