Abstract
This paper presents a new type of fault-tolerant access network: an all-passive coaxial cable mesh network. The passive mesh network could have any topology, with cycles allowed. A technique for calculating the multipath response of the passive mesh network is presented. Both the delay and attenuation of a coaxial cable are represented by a single transform variable. The mesh network is modeled as a linear system with a state space that represents signal propagation. The channel responses of the individual sections of cable define the entries of a state-transition matrix. Using this theory, expressions are given for the overall mesh-network channel response. These expressions are manipulated to derive equalizer structures. The equalizers are zero-forcing and use decision feedback. It is shown that signals transmitted on any mesh network can be equalized. An example mesh topology, and equalizers for it, are presented. Signal and interference attenuation, and opposite-phase received carrier cancellation, are also discussed. The passive mesh network could be an inexpensive fault-tolerant architecture for residential access to telephony, cable TV, and future services.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have