Abstract

Until today, the oral delivery of peptide drugs is hampered due to their instability in the gastrointestinal tract and low mucosal penetration. To overcome these hurdles, PLA (polylactide acid)-nanoparticles were coated with a cyclic, polyarginine-rich, cell penetrating peptide (cyclic R9-CPP). These surface-modified nanoparticles showed a size and polydispersity index comparable to standard PLA-nanoparticles. The zeta potential showed a significant increase indicating successful CPP-coupling to the surface of the nanoparticles. Cryo-EM micrographs confirmed the appropriate size and morphology of the modified nanoparticles. A high encapsulation efficiency of liraglutide could be achieved. In vitro tests using Caco-2 cells showed high viability indicating the tolerability of this novel formulation. A strongly enhanced mucosal binding and penetration was demonstrated by a Caco-2 binding and uptake assay. In Wistar rats, the novel nanoparticles showed a substantial, 4.5-fold increase in the oral bioavailability of liraglutide revealing great potential for the oral delivery of peptide drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call