Abstract

Coating defect detection is a critical aspect of ensuring product quality in the manufacturing process. However, due to the variety of coating defects and the complex detection background in actual production, detecting these defects can be challenging. To improve the accuracy and robustness of coating defect detection, a coating defect detection method based on data augmentation and network optimization design is proposed. First, a feature image random adaptive weighted mapping (FIRAWM) strategy is proposed, considering the prior accuracy, quantity and context information of each category. Then, several improvements are made to the YOLOv5 network. Specifically, to mitigate the aliasing effects and enhance feature richness during the feature fusion process, an additional detection layer is added, and the coordinate attention module and the adaptively spatial feature fusion (ASFF) module are introduced. Finally, ablation and comparison experiments are performed to demonstrate the effectiveness of the proposed method. The results show that the method achieves a 96.7 mAP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50</sub> with a processing speed of 61 FPS on the coating defect dataset, outperforming other popular detectors. Furthermore, the method is versatile and can be applied to detection tasks in various scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.