Abstract

Abstract Changes in the amplitude of decadal climate variability over the twentieth century have been noted, with most evidence derived from tropical Pacific sea surface temperature records. However, the length, spatial coverage, and stability of most instrumental records are insufficient to robustly identify such nonstationarity, or resolve its global spatial structure. Here, it is found that the long-term, stable, observing platform provided by tide gauges reveals a dramatic increase in the amplitude and spatial coherence of decadal (11–14-yr period) coastal sea level (ζ) variability between 1960 and 2000. During this epoch, western North American ζ was approximately out of phase with ζ in Sydney, Australia, and led northeastern U.S. ζ by approximately 1–2 years. The amplitude and timing of changes in decadal ζ variability in these regions are consistent with changes in atmospheric variability. Specifically, central equatorial Pacific wind stress and Labrador Sea heat flux are highly coherent and exhibit contemporaneous, order-of-magnitude increases in decadal power. These statistical relationships have a mechanistic underpinning: Along the western North American coastline, equatorial winds are known to drive rapidly propagating ζ signals along equatorial and coastal waveguides, while a 1–2-yr lag between Labrador Sea heat fluxes and northeastern United States ζ is consistent with a remotely forced, buoyancy-driven, mechanism. Tide gauges thus provide strong independent support for an increase in interbasin coherence on decadal time scales over the second half of the twentieth century, with implications for both the interpretation and prediction of climate and sea level variability. Significance Statement Decadal climate variability influences the frequency and severity of many natural hazards (e.g., drought), with considerable human and ecological impacts. Understanding observed changes and predicting future impacts relies upon an understanding of the physical processes and any changes in their variability and relationship over time. However, identifying such changes requires very long observational records. This paper leverages a large set of tide gauge records to show that decadal time scale coastal sea level variability increased dramatically in the second half of the twentieth century, in widely separated geographic locations. The increase was driven by a shift in the amplitude, spatial pattern, and interbasin coherence of atmospheric pressure, wind, and sea surface temperature variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call