Abstract
We give an overview of a number of algebraic multigrid methods targeting finite element discretization problems. The focus is on the properties of the constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In particular, a necessary condition known as "weak approximation property," and a sufficient one, referred to as "strong approximation property," are discussed. Their role in proving convergence of the TG method (as iterative method) and also on the approximation properties of the algebraic mottigrid (AMG) coarse spaces if used as discretization tool is pointed out. Some preliminary numerical results illustrating the latter aspect are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.