Abstract

In this paper, we introduce weak versions (the weak approximation property, the bounded weak approximation property, and the quasi approximation property) of the approximation property and derive various characterizations of these properties. And we show that if the dual of a Banach space X has the weak approximation property (respectively the bounded weak approximation property), then X itself has the weak approximation property (respectively the bounded weak approximation property). Also we observe that the bounded weak approximation property is closely related to the quasi approximation property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.