Abstract

Presently, the segmented mirror is the mainstream development direction of large-aperture telescopes. The key problem affecting the performance of segmented mirror telescopes concerns the co-phase of the segments. The segments’ co-phase includes the fine phasing stage with high detection accuracy requirements and a small measurable range, and the coarse phasing stage with relatively high detection accuracy requirements and a large measurable range. For interferometry, the required accuracy of the transition from the coarse phasing stage to the fine phasing stage is half of the measured wavelength (~300 nm). In this study, a piston measure method based on the wavefront data of the interference measurement results of multiple different wavelengths is proposed. The simulation results show that the method can achieve a measurement accuracy of more than 300 nm in a large range of 1 mm. The experimental results show that the method can achieve a more-than-300-μm measurable range and approximately 1.5 μm detection accuracy under laboratory conditions; this method has advantages in terms of the measured range and speed and is suitable for the coarse phasing stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call