Abstract

A data-driven ab initio generalized Langevin equation (AIGLE) approach is developed to learn and simulate high-dimensional, heterogeneous, coarse-grained (CG) conformational dynamics. Constrained by the fluctuation-dissipation theorem, the approach can build CG models in dynamical consistency (DC) with all-atom molecular dynamics. We also propose practical criteria for AIGLE to enforce long-term DC. Case studies of a toy polymer, with 20 CG sites, and the alanine dipeptide, with two dihedral angles, elucidate why one should adopt AIGLE or its Markovian limit for modeling CG conformational dynamics in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.