Abstract

We present a generalized Langevin equation (GLE) of motion that governs exactly the time evolution of phase-space observables in finite open systems described by classical Hamiltonians with explicitly time-dependent potentials. This formalism is based on the Mori-Zwanzig projection operator (PO) method with a time-independent Zwanzig PO within a Heisenberg (Lagrangian) picture and reduced description of Hamiltonian systems in terms of canonical relevant and irrelevant coordinates. We demonstrate that, similarly to closed systems, GLE dynamics in Hamiltonian systems in the presence of time-dependent potentials is determined by conservative, dissipative memory, and projected force fields, and that the memory functions relate to the projected force, which is a two-time process, in a way that is reminiscent of the equilibrium second fluctuation-dissipation relation. We further show that, in the most general case, the memory kernel depends on the relevant momentum gradients of the (Boltzmann) entropy of the irrelevant subsystem. Using two Zwanzig operators which are, respectively, functionals of the canonical and generalized canonical probability densities, we then derive what we call canonical and generalized canonical GLEs. Further, we can formulate the particle-based, coarse-grained (CG) GLE dynamics by transitioning to Jacobi coordinates which corresponds to a particle set partitioning of the Hamiltonian system. The obtained canonical CG GLE of motion for the relevant momenta is a generalization of the CG equation of motion known for closed systems. Also, using a Markovian approximation of the canonical CG GLE, we can extend the dissipative particle dynamics equation to open systems. A distinctive feature of our extension is a use of explicitly time-dependent frictions, which reflect the changes in the dissipation rate caused by time-dependent coupling to an external bath. Our GLE formalism and workflow constitute a general and viable framework that can be readily used as a starting point to rigorously formulate microscopically informed CG treatments for a variety of phenomena in externally forced systems far from equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call