Abstract
We propose the coarse-grained spectral projection method (CGSP), a deep learning assisted approach for tackling quantum unitary dynamic problems with an emphasis on quench dynamics. We show that CGSP can extract spectral components of many-body quantum states systematically with a sophisticated neural network quantum ansatz. CGSP fully exploits the linear unitary nature of the quantum dynamics and is potentially superior to other quantum Monte Carlo methods for ergodic dynamics. Preliminary numerical results on one-dimensional XXZ models with periodic boundary conditions are carried out to demonstrate the practicality of CGSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.