Abstract
Epoxy-based polymer nanocomposites are promising materials for high voltage insulation in industrial use because they have advantages in some properties such as thermal resistivity, mechanical toughness and good V-t characteristics. In polymer nanocomposites, interfaces between fillers and polymer matrices are considered to play a predominant role because they have much larger interface areas than in microcomposites. The coarse-grained molecular dynamics simulation, based on the bead-spring model in polymer physics, is a powerful tool for interpreting the morphology and dynamics of polymer chains. In this study, a coarse-grained molecular dynamics simulation including a reaction model of monomers such as chief ingredients and hardener was conducted to investigate the thermodynamic properties of the interface between nano-fillers and thermosetting resins. Simulation results indicate that the dynamics of network chains close to the nano-filler surfaces is different from the bulk regions. This result will give in-depth analysis of interfacial problems of nano-composites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have