Abstract

Coalescence-induced droplet jumping on pillar-arrayed surfaces has received extensive attention. The pillar size and distribution affect the coalescence and jumping of droplets with unclear mechanisms. For the first time, this study performs molecular dynamics (MD) simulations to reveal the effects of initial wetting states on jumping and associated condensation processes at various intrinsic contact angles ( θ Y ), solid fractions ( f ), and roughness factors ( r ). The results show that although jumping and its velocity strongly depend on θ Y , f , and r , as reported in previous studies, the underlying mechanism to determine whether jumping occurs is the initial wetting state of coalescing droplets on textured surfaces. With the same θ Y and f , when the droplets are initially in the Cassie state, jumping can take place, whereas it may be hindered when the droplets are in the Wenzel state. The jumping velocity shows a decreasing trend for Cassie droplets when increasing f , but the reverse is true for Wenzel droplets. Additionally, it is found that the wetting state of a condensed droplet would transition from the Wenzel state to the Cassie state when the solid fraction increases but the pillar height and intrinsic wettability remain unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.