Abstract

Increasing energy demand and associated global warming are unarguably the two major challenges that the world currently faces. One of the ideas to reduce the carbon footprint while increasing the efficiency of the energy extraction is CO2 sequestration in coal seams. This can additionally enhance the coal-bed methane production. However, this process depends on many factors, among which coal wettability is of particular importance especially because of its pressure and temperature dependency. To evaluate this process, coal wettability was tested by measuring the contact angle of CO2 and water as a function of pressure, temperature, and salinity (DI water and brine (5 wt % NaCl + 1 wt % KCl), i.e., wt % is the weight percentage of salt to water. The results show that the CO2–water contact angle increases significantly, with increasing pressure, temperature, and salinity indicating more-effective CO2 wetness of coal. This, in turn, can reduce the CO2 residual trapping capacities and increase methane recover...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.