Abstract

This work presents a hybrid discrete fracture-dual porosity model of compressible fluid flow, adsorption and geomechanics during CO2 sequestration in coal seams. An application of the model considers the influence of hydraulic fractures on CO2 transport and the stress field of the coal. The low initial permeability of coal is compounded by the injectivity loss associated with adsorption-induced coal swelling, which is recognised as the major challenge limiting CO2 sequestration in coal seams. In this model, the natural fracture network and coal matrix are described by a dual porosity model, and a discrete fracture model with lower-dimensional interface elements explicitly represents any hydraulic fractures. The two models are coupled using the principle of superposition for fluid continuity with a local enrichment approximation for displacement discontinuity occurring at the surface of hydraulic fractures. The Galerkin finite element method is used to solve the coupled governing equations, with the model being verified against analytical solutions and validated against experimental data. The simulation results show that the presence of a hydraulic fracture influences the distribution of gas pressure and improves the gas flow rate, as expected. The stress field of a coal seam is disturbed by CO2 injection, especially the vertical stress, and the presence of a hydraulic fracture leads to a reduction in stress with permeability recovery starting earlier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.