Abstract
In order to predict the coal outburst risk quickly and accurately, a PCA-FA-SVM based coal and gas outburst risk prediction model was designed. Principal component analysis (PCA) was used to pre-process the original data samples, extract the principal components of the samples, use firefly algorithm (FA) to improve the support vector machine model, and compare and analyze the prediction results of PCA-FA-SVM model with BP model, FA-SVM model, FA-BP model and SVM model. Accuracy rate, recall rate, Macro-F1 and model prediction time were used as evaluation indexes. The results show that: Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model. The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962, recall rate is 0.955, Macro-F1 is 0.957, and model prediction time is 0.312s. Compared with other models, The comprehensive performance of PCA-FA-SVM model is better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.