Abstract

A pilot-scale study was performed to evaluate a coagulant dose which had been optimized for biopolymer (i.e., foulant) removal on subsequent ultrafiltration (UF) fouling, as well as disinfection by-product (DBP) precursor removal. Polyaluminum chloride (PACl) dosages were selected based on a point of diminishing returns for biopolymer removal (0.5 mg/L) and directly compared to that applied at full-scale (6 mg/L). Membrane fouling (reversible and irreversible) was measured as resistance increase over a 48 hour filtration period. DBP formation potential (total trihalomethanes (TTHMs), haloacetic acids (HAA9) and total adsorbable organic halides (AOX)) were measured in both raw and treated waters. Results of the study indicate that application of a PACl dose optimized for biopolymer reduction (0.5 mg/L) resulted in 65% less irreversible UF fouling when compared to 6 mg/L. The addition of PACl prior to the membrane resulted in up to a 14% reduction in DBP precursors relative to the UF membrane alone. A similar level of DBP precursor reduction was achieved for both 0.5 and 6 mg/L dosages. The results have implications for cost savings, which may be realized due to decreased chemical use, as well as increased membrane life associated with lower irreversible fouling rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.