Abstract

Sanitary landfill leachates are considered as heavily polluted industrial wastewaters, presenting significant time and spatial variations of their physical–chemical parameters. Special care is required for their efficient treatment and disposal. The main aim of this work was to examine the application of coagulation–flocculation for the treatment of raw and partially stabilized leachates. Jar-test experiments were employed in order to determine the optimum conditions for the removal of organic matter and color, i.e. coagulant–flocculant combination, effective dosage and pH control. Ferric chloride, aluminium sulphate and lime were tested as conventional coagulants, whereas four commercial polyelectrolytes were co-examined: one anionic, two cationic and a non-ionic polymer. High chemical oxygen demand (COD) removal capacities (about 80%) were obtained during the addition of ferric chloride to the partially stabilized leachates, whereas low COD reductions (i.e. lower than 35%) were measured during the addition of coagulants in the raw samples. The addition of polyelectrolytes and pH adjustment in the alkaline region were found to affect slightly the removal of pollutants. The physico-chemical process may be used as a useful pretreatment step, especially for fresh leachates, prior to biological treatment, or as a post-treatment (polishing) step for partially stabilized leachates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.