Abstract

Novel pre-coagulation–sedimentation integrated with ultraviolet activated sodium percarbonate (SPC) (Fe(III)-UV/SPC) processes are promising methods for ultrafiltration (UF) pretreatment to ensure the safety of rural drinking water and mitigate UF membrane fouling. The process of surface water purification using the integrated coagulation-advanced oxidation processes (AOPs)-UF system relies on the idea that pre-coagulation can remove hydrophobic macromolecular organic compounds, thus facilitating the oxidation of hydrophilic molecules or medium-sized macromolecules to improve the utilization efficiency of free radicals in AOPs. Compared with the UV/SPC process, the removal rates of UV254 and DOC in the Fe(III)-UV/SPC process (Fe(III) = 0.1 mM, SPC = 0.5 mM) were increased from 87.39 % to 41.45 %–93.56 % and 52.51 %, respectively. Furthermore, the dosage of SPC was reduced from 0.75 mM in UV/SPC process to 0.5 mM due to effects of pre-coagulation. The free radical quenching experiment showed that a significant radical sink of reactions with organic contaminants was formed by •OH and CO3•- in the UV/SPC process, rather than a single specific radical. The destruction of the cake layer structure, reduction in contaminant concentration, and appearance of many permeable holes on the membrane surface were the main reasons for the alleviation of UF membrane fouling. Finally, the trans-membrane pressure and reversible membrane resistance decreased from 22.33 kPa to 3.68 × 1011 m−1 to 18.28 kPa and 0.93 × 1011 m−1, respectively. These results provide new insights into the behavior of membrane fouling control and offer technical references for the long-term stable operation of the UF process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.