Abstract

Noise in astronomical images significantly impacts observations and analyses. Traditional denoising methods, such as increasing exposure time and image stacking, are limited when dealing with single-shot images or studying rapidly changing astronomical objects. To address this, we developed a novel deep-learning denoising model, CoaddNet, designed to improve the image quality of single-shot images and enhance the detection of faint sources. To train and validate the model, we constructed a dataset containing high and low signal-to-noise ratio (SNR) images, comprising coadded and single-shot types. CoaddNet combines the efficiency of convolutional operations with the advantages of the Transformer architecture, enhancing spatial feature extraction through a multi-branch structure and reparameterization techniques. Performance evaluation shows that CoaddNet surpasses the baseline model, NAFNet, by increasing the Peak Signal-to-Noise Ratio (PSNR) by 0.03 dB and the Structural Similarity Index (SSIM) by 0.005 while also improving throughput by 35.18%. The model significantly improves the SNR of single-shot images, with an average increase of 22.8, surpassing the noise reduction achieved by stacking 70-90 images. By boosting the SNR, CoaddNet significantly enhances the detection of faint sources, enabling SExtractor to detect an additional 22.88% of faint sources. Meanwhile, CoaddNet reduced the Mean Absolute Percentage Error (MAPE) of flux measurements for detected sources by at least 27.74%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.