Abstract

Nitrite reductase (NIR; EC 1.7.7.1) - a key enzyme of nitrate reduction - is known to be induced by nitrate and light. In the present study with tobacco (Nicotiana tabacum L.) seedlings the dependency of NIR gene expression on nitrate, light and a plastidic factor was investigated to establish the nature of the coaction between these controlling factors. A cDNA clone coding for tobacco plastidic NIR was available as a probe. The major results were as follows: (i) The light effect on the appearance of NIR occurred predominantly through phytochrome. However, a specific blue-light effect was also involved. (ii) There was no effect of light on NIR appearance in the absence of nitrate while light exerted a strong effect when nitrate was provided. (iii) Anion-exchange chromatography revealed only a single form of NIR. While experiments involving plastid photooxidation indicated that this NIR is plastidic, a small residual level could not be eliminated by photooxidation. (iv) Northern blot analysis of NIR-transcript levels indicated that a low transcript level existed in the absence of nitrate and light; however, this level appeared to be increased slightly by light (in the absence of nitrate) and by nitrate (in the absence of light). A high transcript level was detected only when light as well as nitrate were provided. A low level was found when the plastids were damaged by photooxidation. It is concluded that plastidic NIR gene expression in tobacco requires positive control by a plastidic factor. Moreover, a synergistic action of phytochrome and nitrate is required to bring about a high transcript level. As found previously with mustard and spinach seedlings, there is no quantitative relationship between the transcript level and the rate of enzyme synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call