Abstract

Tuberous sclerosis (TSC), an autosomal dominant disorder, is characterized by malformations, hamartomas and tumors in various organs including the brain. TSC is genetically linked to two loci: TSC1 on chromosome 9q34 and TSC2 on 16p13.3. TSC2 has been cloned, sequenced and encodes a protein (tuberin) which functions as a tumor suppressor. We have analyzed the distribution of TSC2 mRNA and tuberin in the brains of TSC patients and non-affected individuals using both autopsy and biopsy material. High levels of transcript and protein expression were observed in choroid plexus epithelium, ependymal cells, most brainstem and spinal cord motor neurons, Purkinje cells and the external granule cell layer of the cerebellum in both TSC and control cases. Individual balloon cells from TSC patients showed very faint expression while other glia showed no expression of either transcript or tuberin. Neocortical and hippocampal neurons expressed high levels of TSC2 transcript, but only modest levels of tuberin. The internal granule cell layer of the cerebellum expressed abundant transcript but low levels of tuberin. These observations suggest either that tuberin expression is controlled at the level of both transcription and translation or the antibody and in-situ hybridization recognize different splice variants of the TSC2 gene. In TSC patients, dysmorphic cytomegalic neurons expressed high levels of tuberin and transcript, particularly when in an 'ectopic' location. Individual cells within subependymal giant cell astrocytomas (SEGAs) and hamartomas from TSC patients expressed moderate to high levels of TSC2 transcript and tuberin. While the TSC2 transcript is widely expressed primarily within neurons, tuberin is demonstrable primarily within dysplastic/cytomegalic cells of the cortex and subependymal hamartomas/SEGAs. CNS expression of tuberin is unique in that primarily non-dividing cells express it in this location, whereas extra-CNS expression of tuberin is mainly found in actively proliferating cell types such as epithelium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.