Abstract

Converting CO2 into fuels and other value-added chemicals via an electrochemical reduction method has recently attracted great interest. However, there are still challenges to find suitable catalysts with high selectivity toward the formic acid formation. Here, we report the bimetallic CuSn-based catalyst to reduce CO2 to formic acid by optimizing the ratio of Cu to Sn to achieve the optimal selectivity. The catalyst is generated on laser-induced graphene. Among the catalysts, CuSn-4 with Cu/Sn atomic ratio close to 1:2 shows a faradaic efficiency of 99% toward formic acid with a high partial current density of 26 mA/cm2. Density functional theory calculations demonstrate that OCHO* intermediate formation is more favorable than that of COOH* on Sn sites, while OCHO* intermediate formation is moderate on Cu sites. The synergetic catalytic effect between Cu and Sn would further favor HCOOH formation. This study provides significant insight into the mechanism of formic acid formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call