Abstract

We report on the electromagnetic properties of Co2+ substituted spinel MgCuZn ferrites developed via a facile molten salt synthesis (MSS) route. The choice of synthesis route in combination with cobalt substitution led to strong electromagnetic properties such as high saturation magnetization (i.e., 63 emu/g), high coercivity (17.86 gauss), and high initial permeability (2730), which are beneficial for the multilayer chip inductor (MLCI) application. In a typical process, the planned ferrites were synthesized at 800 °C using sodium chloride as a growth inhibitor, with dense morphology and irregularity in the monolithicity of the grains. The compositional analysis of as-prepared ferrite confirms the presence of desired elements with their proportion. The crystallite size (using X-ray diffraction (XRD) analysis) for different samples varies in the range of 49–51 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showcases the compact morphology of the developed samples, which is typical in the ferrite system. The dielectric properties (dielectric-loss and dielectric-constant) in the frequency range of 100Hz–1MHz suggest normal dielectric distribution according to interfacial polarization from Maxwell–Wagner. From the developed ferrites, upon comparison with a low dielectric loss with high permeability value, Mg-Cu-Zn ferrite with Co = 0.05 substitution proved to be a stronger material for MLCIs with high-performance applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.