Abstract

Potassium carbonate promoted with glycine is considered as potential candidates for CO2 removal process as it demonstrated less energy usage during the regeneration process. Hence, in order to model the process at upscale condition, the loading of CO2 into the promoted solvent is measured at temperature (30-60 0C) over the elevated pressure (10 bar) using high pressure solubility cell. The equilibrium solubility data is measured for 15wt% potassium carbonate + 3wt% glycine and 20wt% potassium carbonate +5 wt% glycine. This work aims to study the solubility of CO2 into the promoted solvent at higher operating pressure, thus the vapor liquid equilibrium (VLE) can be derived and further facilitate the development of simulation for CO2 absorption process at the upscale condition. Results show that the CO2 is less favor to absorb into the promoted solvent at high temperature since the process is exothermic, thus increasing temperature would decrease the tendency of the absorption process. The comparative analysis also showed that solubility is improved at higher pressure as greater force assist to alleviate the surface stress of the solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call