Abstract

The effect of Co loading (5−30 wt %) and process parameters (reduction pretreatment, reaction temperature, and space velocity) have been investigated over CoOx/MgO(5%)/SA-5205 catalyst for the CO2 methane reforming process. The Co loading had a profound effect on the methane conversion and the hydrogen selectivity (initial and time-on-stream activity) for the unreduced catalysts. While negligible methane conversion was observed for the 5 and 10 wt % Co loading catalyst, methane conversions >95% were obtained over the high Co loading (20 and 30 wt %) catalysts; hydrogen selectivity followed the same trend as methane conversion. The Co loading level had a relatively smaller influence in the case of the reduced catalysts. While the 5 wt % Co catalyst showed low methane conversion activity (<30%), the 10 wt % Co catalyst showed methane conversion levels comparable to those of the high Co loading catalysts. The high Co loading catalysts showed an excellent time-on-stream performance for the CO2 methane reformi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call