Abstract

The torrefaction bio-oil is composed of a number of chemical compounds with low concentrations, which results in a low efficiency of its application. To improve the concentrations of high-value chemicals such as furfural in the torrefaction bio-oil, four metal chlorides and hydrochloric acid were investigated as catalysts in the torrefaction of Douglas fir by microwave heating. The number of chemical compounds in the attained bio-oil was significantly reduced with introducing MgCl2, FeCl3, and AlCl3 being into the process of torrefaction. The bio-oil obtained with these three catalysts were dominated by furfural with the concentration over 20 mg/g with the torrefaction temperature, time, and catalyst/reactant ratio of 250 °C, 10 min, and 8 wt.%, respectively. The effects of torrefaction conditions on product yield were investigated by selecting MgCl2 as the catalyst, and the results indicated that the yield of torrefied biomass decreased significantly with the increase of reaction temperature, time, and catalyst loading while the yield of bio-oil collected simultaneously was increased. Further analysis for the bio-oil suggested that low temperature, long reaction time, and high catalyst loading favored furfural production. The analysis for non-condensable gas suggested that high reaction temperature and catalyst loading promoted the methane and carbon monoxide production during torrefaction. According to bio-oil and non-condensable gas analysis, a reaction pathway was proposed to explain biomass catalytic torrefaction using MgCl2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.