Abstract

Electrospun nanofibers have been widely used in regenerative medicine due to its biomimicry property. However, most of studies are limited to the use of 2D electrospun nanofiber membranes. To the best of our knowledge, this article is the first instance of the transformation of traditional electrospun nanofiber membranes from 2D to 3D via depressurization of subcritical CO2 fluid. This method eliminates many issues associated with previous approaches such as necessitating the use of aqueous solutions and chemical reactions, multiple-step process, loss of the activity of encapsulated biological molecules, and unable to expand electrospun nanofiber mats made of hydrophilic polymers. Results indicate that these CO2 expanded nanofiber scaffolds can maintain the activity of encapsulated biological molecules. Further, the CO2 expanded nanofiber scaffolds with arrayed holes can greatly promote cellular infiltration, neovascularization, and positive host response after subcutaneous implantation in rats. The current work is the first study elucidating such a simple and novel strategy for fabrication of 3D nanofiber scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.