Abstract

Uplift and erosion modulate the carbon cycle over geologic timescales by exposing minerals to chemical weathering. However, the erosion sensitivity of mineral weathering remains difficult to quantify. Solute-chemistry datasets from mountain streams in different orogens isolate the impact of erosion on silicate weathering-a carbon dioxide (CO2) sink-and coupled sulfide and carbonate weathering-a CO2 source. Contrasting erosion sensitivities of these reactions produce a CO2-drawdown maximum at erosion rates of ~0.07 millimeters per year. Thus, landscapes with moderate uplift rates bolster Earth's inorganic CO2 sink, whereas more rapid uplift decreases or even reverses CO2 sequestration. This concept of an "erosion optimum" for CO2 drawdown reconciles conflicting views on the impact of mountain building on the carbon cycle and permits estimates of geologic CO2 fluxes dependent upon tectonic changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call