Abstract
Silicate weathering sequesters CO2 from the atmosphere and stabilizes Earth’s climate over geologic timescales. In turn, weathering of accessory carbonate and sulfide minerals is a geologically relevant CO2 source. Rock-uplift and -erosion is the primary mechanism by which fresh minerals are exposed to weathering at Earth’s surface. Therefore, the global inorganic carbon cycle is sensitive to mountain uplift and erosion. However, quantifying this sensitivity is complex, because existing data do not consider weathering of all relevant mineral phases, and because co-variation of multiple environmental factors obscures the role of erosion. Here, we analyze the sensitivity of silicate, carbonate, and sulfide weathering fluxes to erosion in four datasets of solute chemistry from small mountain streams that span well-defined erosion-rate gradients in relatively uniform metasedimentary lithologies and with limited or well-constrained variations in runoff. Across all datasets and 2-3 orders of magnitude of erosion rate, we find that silicate weathering fluxes are almost insensitive to erosion at rates >10-2 mm yr-1. In contrast, weathering fluxes from sulfide and carbonate minerals increase sub-linearly with erosion, contradicting expectations from soil data and theory. By fitting a weathering model to these data, we show that the contrasting sensitivities of silicate, carbonate, and sulfide weathering produce a distinct CO2-drawdown maximum at moderate erosion rates of ~0.1 mm/y. Below this maximum, mineral supply limits silicate weathering. Above the maximum, silicate weathering fluxes plateau and CO2 emissions from coupled sulfide oxidation and carbonate weathering increasingly dominate the carbon budget. Thus, for metasedimentary lithologies, uplift of landscapes to moderate relief and erosion rates can substantially bolster Earth’s CO2 sink whereas further uplift may decrease, rather than increase CO2 sequestration rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.