Abstract
A novel and innovative method was developed to fabricate defect-free composite hollow fiber (HF) membranes using drop-casting under continuous flow. The synthesized Pebax-1657—based membranes were examined for gas separation processes, focusing on the separation of CO2 from CH4 and CO gases. The separation performance of the membranes was rigorously assessed under realistic binary gas mixture conditions to evaluate their selectivity and performance. The effect of pressure on separation performance was systematically investigated, with transmembrane pressures up to 10 bar being applied at a temperature of 298 K. Remarkable CO2/CH4 selectivities of up to 110 and CO2/CO selectivities of up to 48 were achieved, demonstrating the robustness and effectiveness of these composite HF membranes, suggesting their suitability for high-performance gas separation processes under varying operational conditions. Overall, this study introduces a novel approach for scaling up the fabrication of HF membranes and provides valuable insights into their application in CO2 separation technologies, offering the potential for advancements in areas such as natural gas processing and carbon capture from CO-containing streams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have