Abstract

The gas evolution, mass decay behavior and energy content of several woods, grasses, and agricultural residues were examined with steam and CO(2) gasification using thermogravimetric analysis and gas chromatography. CO(2) concentrations were varied between 0 and 100% with steam as a coreactant. Carbon conversion was complete with 25% CO(2)/75% steam compared to 90% conversion with pure steam in the temperature range of 800-1000 degrees C. The largest effect was from 0-5% CO(2) introduction where CO concentration increased by a factor of 10 and H(2) decreased by a factor of 3.3 at 900 degrees C. Increasing CO(2) from 5 to 50% resulted in continued CO increases and H(2) decrease by a factor of 3 at 900 degrees C. This yielded a H(2)/CO ratio that could be adjusted from 5.5 at a 0% CO(2) to 0.25 at a 50% CO(2) concentration. Selection of the gasification parameters, such as heating rate, also enabled greater control in the separation of cellulose from lignin via thermal treatment. 100% CO(2) concentration enabled near complete separation of cellulose from lignin at 380 degrees C using a 1 degrees C min(-1) heating rate. Similar trends were observed with coal and municipal solid waste (MSW) as feedstock. The likely mechanism is the ability for CO(2) to enhance the pore structure, particularly the micropores, of the residual carbon skeleton after drying and devolatilization providing access for CO(2) to efficiently gasify the solid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.