Abstract
Porous liquids (PLs) are an attractive material for gas separation and carbon sequestration due to their permanent internal porosity and high adsorption capacity. PLs that contain zeolitic imidazole frameworks (ZIFs), such as ZIF-8, form PLs through exclusion of aqueous solvents from the framework pore due to its hydrophobicity. The gas adsorption sites in ZIF-8 based PLs are historically unknown; gas molecules could be captured in the ZIF-8 pore or adsorb at the ZIF-8 interface. To address this question, ab initio molecular dynamics was used to predict CO2 binding sites in a PL composed of a ZIF-8 particle solvated in a water, ethylene glycol, and 2-methylimidazole solvent system. The results show that CO2 energetically prefers to reside inside the ZIF-8 pore aperture due to strong van der Waals interactions with the terminal imidazoles. However, the CO2 binding site can be blocked by larger solvent molecules that have greater adsorption interactions. CO2 molecules were unable to diffuse into the ZIF-8 pore, with CO2 adsorption occurring due to binding with the ZIF-8 surface. Therefore, future design of ZIF-based PLs for enhanced CO2 adsorption should be based on the strength of gas binding at the solvated particle surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have