Abstract

The ability to predict the transport of heavy metal ions in porous media with different surface characteristics is crucial to protect groundwater quality and public health. In this study, the effects of graphene oxide (GO) on co-transport and remobilization of Pb2+ and Cd2+ in humic acid (HA), smectite, kaolinite, and ferrihydrite-coated sand media were evaluated via laboratory packed-column experiments. Scanning electron microscope and energy dispersive X-ray analysis showed that the surface morphology of the coated sands was quite different and that ∼56.7–89.9% of the surface was covered by the coating and the major elemental components were C, O, Si, Al, and Fe. GO exhibited high mobility in HA, kaolinite, and smectite-coated sand, but showed high retention in ferrihydrite-coated sand. While GO reduced the transport of Pb2+ and Cd2+, both metal ions also reduced the mobility of GO in coated-sand columns. Elution experiments revealed that GO led to the remobilization and release of the previously sorbed Pb2+ and Cd2+ from the coated sand. However, GO could not release Pb2+ and Cd2+ from smectite-coated sand columns, probably because smectite has stronger adsorption affinity to the heavy metals than GO. Derjaguin-Landau-Verwey-Overbeek calculations were employed and explained the GO transport behavior in the columns well. Furthermore, the advection-dispersion-reaction equation simulated the cotransport of Pb2+ and Cd2+ with GO in the coated sand well. These results are expected to provide insight into the potential impact of coexisting nanomaterials with contaminants in vulnerable soil and groundwater systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.