Abstract

Poly-L-lysine (PLL) is a promising candidate for the treatment of pulmonary infection with lower occurrence of drug-resistance due to its unique antibacterial mechanisms. Dry powder inhalations (DPIs) are considered as the first choice for formulating PLL to treat pulmonary infection on account of direct delivery and satisfactory stability. However, hygroscopicity of PLL limited its therapeutic effect on pulmonary infection when PLL developed into DPIs. The hygroscopicity caused two obstacles including the low drug deposition in the lower respiratory tract and undesirable aerosolization performance deterioration. In this study, PLL was co-spray-dried with L-leucine (LL) to achieve moisture-resistance and desirable aerosolization performance. The ratio of PLL and LL was optimized to obtain particles with different morphology, hygroscopicity and aerodynamic properties. The obtained PLL DPIs were suitable for inhalation with a corrugated surface formed by hydrophobic LL. The anti-hygroscopicity, aerosolization performance and rheological properties of P2 DPIs were optimal when PLL:LL = 85:15. The DPIs particles were stable after being stored at high relative humidity (60 ± 5%), and their superiority in treating pulmonary infections was also proved by in vitro and in vivo experiments. The established PLL DPIs were proved to be a feasible and desirable approach to treat pulmonary infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.