Abstract
The re-release of heavy metals accumulated in the drinking water distribution systems (DWDSs) may pose a significant threat to water quality and human health. In this work, the pipe scales in the actual DWDS were collected, and their physicochemical characteristics were investigated by SEM, XRF, XRD, XPS, and sequential extraction procedure. The co-release potential of heavy metals under different scale dosages, temperatures, and stagnation times was explored by stagnation release tests. Pearson correlation analysis on metal release and human health risk assessment was used to reveal the inter-metal correlation and potential risk of metal release. The results showed that the metal release potential under stagnation water conditions arose primarily from the acid-soluble fraction. The chronic non-carcinogenic risk of soluble metals followed the order: Mn > Fe > Zn > Pb. The risk caused by the soluble metal release could be ignored (HI < 1, HI: hazard index) under normal stagnation times (within 8 h). The major finding of this work was that Ca and Mn were more labile to release and had a significant linear co-release correlation (scale powder: R2 = 0.906, p < 0.01; pipe section: R2 = 0.982, p < 0.01), which indicated their co-existence and linear co-release. Ca was recognized as the “major metal” that affected the release of trace metals. The health risk probably increased with the release of Ca, which could also be used as an “indicator” of Mn release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.