Abstract

A microkinetic analysis in terms of DFT-calculated temperature-dependent Gibbs free energies was performed for the oxidation reactions of CO and H2 on a model Mn4O8 cluster. Apparent activation energies data predict a peculiar CO preferential oxidation pattern of Mn(IV) sites in presence of hydrogen (PROX) substantiated by the unprecedented PROX behavior of a nanocomposite MnCeOx catalyst in the range of 353–423 K under both ideal and real process conditions. Micro- and macrokinetic data on the “model” cluster and “real” catalyst are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.