Abstract

Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL−1 and 4.96 [±0.15] g dry weight L−1) compared closely to those of Turbo (37.43 [±1.99] mg mL−1 and 4.78 [±0.10] g L−1, respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

Highlights

  • There is global impetus towards development of biorefineries that utilise industrial, rural and municipal waste for the production of bioenergy and marketable bio-based compounds

  • We investigate the co-production of bioethanol and probiotic yeast biomass from enzyme-pretreated grass juice (Martel et al 2010)

  • The purpose of this study was to investigate if the co-production of bioethanol and probiotic yeast biomass is a feasible strategy for enhancing the productivity and value of rural biorefineries of the future

Read more

Summary

Introduction

There is global impetus towards development of biorefineries that utilise industrial, rural and municipal waste for the production of bioenergy and marketable bio-based compounds. In addition to its use in fermentation, food and biofuel industries, the brewing yeast Saccharomyces cerevisiae has several health applications. It is used as a protein supplement, immune enhancer and is employed as a vehicle for the introduction of dietary compounds as a commercialised health product (Moyad 2008). Despite its genetic relatedness to S. cerevisiae (Edwards-Ingram et al 2004) and use as a human probiotic for over 50 years, the alternative applications of S. boulardii are not well studied. Given growing interest in the biotherapeutic properties of different yeasts (Foligne et al 2010) there is a clear incentive to develop and apply research knowledge about food grade yeasts

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call