Abstract
Precise transcriptional modulation is a key requirement for developing synthetic probiotics with predictably tunable functionalities. In this study, an expandable and tunable transactivation system was constructed and validated in probiotic yeast Saccharomyces boulardii. The use of nuclease-null Cas9 and scaffold RNA (scRNA) directed regulation enabled transactivation under the control of a synthetic promoter in S.boulardii. A synthetic promoter consisting of the scRNA target sequence and the core GAL7 promoter region restricted interference from the native galactose regulon. The system was readily expanded by introducing new target sequences to the promoter and scRNA. Complementarity between the promoter and scRNA, and binding specificity between scRNA and transcriptional activator, served as two layers of orthogonality of the transactivation. In addition, activator expression under the control of an inducible promoter enabled control of the transactivation via chemical inducer. The described system has the potential to enable engineering of probiotic yeast to more precisely perform therapeutic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.