Abstract

The behavior of bio-oils when co-processed with conventional fossil feed in a fluid catalytic cracking (FCC) unit is suitably tested using a microactivity testing unit (MAT). In the present study, non-catalytic fast pyrolysis oils originating from wood and wheat straw were co-processed in a MAT at a 20/80 weight blend (bio-oil/FCC feed). In addition, bio-oil obtained from deoxygenating the straw derived vapors over a steamed HZSM-5/Al2O3 extrudate catalyst was tested. The bio-oils were characterized for elemental composition and moisture content to calculate energy recoveries, amounting to 35% and 30% for the non-catalytically obtained wood and straw oils, while it was 19% for the partly deoxygenated straw oil. Wood oil showed higher acidity (61 mg KOH/g) and molar O/C ratio (0.35) compared to straw oil (54 mg KOH/g and O/C = 0.24). The acidity and O/C ratio was reduced for the straw-derived bio-oil from catalytic vapor treatment (3 mg KOH/g, O/C = 0.08). At constant conversion (77.5%) at the MAT, the wood pyrolysis oil showed a product distribution quite similar to the reference oil while the wheat straw pyrolysis oil gave a 1.6% points higher coke yield and a 1.2% points lower liquid petroleum gas (LPG) yield. For the catalytically treated wheat straw pyrolysis oil, an even higher coke yield (2.6% points) and 1.9% points lower LPG yield resulted. The observations are attributed to the higher content of aromatics, phenolics, and nitrogen containing compounds of the catalytically upgraded straw fast pyrolysis oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call