Abstract

Previous research showed that hydrodeoxygenated (HDO) pyrolysis-oils could successfully be co-processed with vacuum gasoil (VGO) in a labscale fluid catalytic cracking (FCC) unit to bio-fuels. Typically the hydrodeoxygenation step takes place at ∼300°C under 200–300bar of hydrogen. Eliminating or replacing this step by a less energy demanding upgrading step would largely benefit the FCC co-processing of pyrolysis oils to bio-fuels. In this paper a bio-oil that has been produced by catalytic pyrolysis (catalytic pyrolysis oil or CPO) is used directly, without further upgrading, in catalytic cracking co-processing mode with VGO. The results are compared to the co-processing of upgraded (via HDO) thermal pyrolysis oil. Though small but significant differences in the product distribution and quality have been observed between the co-processing of either HDO or CPO, they could be corrected by further catalyst development (pyrolysis and/or FCC), which would eliminate the need for an up-stream hydrodeoxygenation step. Moreover, the organic yield of the catalytic pyrolysis route is estimated at approximately 30wt.% compared to an overall yield for the thermal pyrolysis followed by a hydrodeoxygenation step of 24wt.%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.