Abstract

NAND flash-based storage devices have rapidly improved their position in the secondary storage market ranging from mobile embedded systems to personal computer and enterprise storage systems. Recently, the most important issue of NAND flash-based storage systems is the performance of random writes as well as sequential writes, which strongly depends on their two main software layers: a Buffer Management Layer (BML) and a Flash Translation Layer (FTL). The primary goal of our study is to highly improve the overall performance of NAND flash-based storage systems by exploiting the cooperation between those two layers. In this paper, we propose an FTL-aware BML policy called Selective Block Padding and a BML-based FTL algorithm called Optimized Switch Merge, which overcome the limitations of existing approaches on performance enhancement. When using both the proposed techniques, evaluation results show that the throughput is significantly increased over that of previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.